
TopologyHomework

(1) (One point compactification) Assume that X is a non-compact connected Hausdorff space in which
every point has a compact neighborhood. Define X

′
:= X t {∞} as a set. You may use the fact that

the intersection of a family of compact sets in a Hausdorff space is compact and the fact that the
union of a finite collection of compact sets is compact.
(a) Define a topology on X

′
as follows: a subset U ⊂ X

′
is open if (i) it is an open subset of X

if U ⊂ X, and (ii) X
′
− U is a compact subset in X if it is not a subset of X. Prove that this

actually defines a topology on X′.
(b) Show that X is a subspace of X′.
(c) Show that X

′
is compact.

(d) Show that X
′

is connected.
(e) Show that if X is R

2
with the usual topology, then X

′
is homeomorphic to the 2-sphere S 2.

Solution:
(a) • ∅ ∈ T since ∅ is an open subset of X.

X
′
∈ T since X

′
− X

′
= ∅ is a compact subset in X and X

′
is not a subset of X.

• Let {U j} satisfy condition (i), and {Vk} satisfy condition (ii). Clearly, U :=
⋃

U j still
satifies condition (i), and V :=

⋃
Vk still satifies condition (ii) since the intersection

of a family of compact sets in a Hausdorff space is compact. Note that X′ \(U∪V) =

(X
′
\ U) ∩ (X

′
\ V), where X

′
\ U is closed and X

′
\ V is compact in the Hausdorff

space X and so the resulting set is compact in X (since it is a closed subset of a
compact set). So by condition (ii), U ∪ V ⊂ T .
• Let {U j : 1 ≤ j ≤ n} satisfy condition (i), and {U j : n + 1 ≤ j ≤ m} satisfy condition

(ii). Clearly, V :=
⋂n

i
U j still satifies condition (i), and W :=

⋂m
n+1

U j still satifies
condition (ii) since the union of finite collection of compact sets is compact. Since
X
′
−W is compact in a Hausdorff space X, it is closed, and so W = X \ (X

′
−W) is

open in X. Thus, we have V ∩W ⊂ T .
(b) Given U ⊂ T . If U ⊂ X, then X ∩ U = U is open in X by condition (i). If U 1 X, then

X
′
− U is compact subset of X, so X

′
− U is closed in X and so X ∩ U = X \ (X

′
− U) is

open in X. So, X is a subspace of X′.
(c) Let {{Ui}i∈I∪{V j} j∈J} be any open covering of X′, where each Ui satisfies condition (i) and

each V j satisfies condition (ii). Note that for each j, V j \ {∞} is an open set in X since it
is the complement of a compact (hence closed) set X

′
\ V j. Also note that J is non-empty

since one of the sets must cover ∞. Let V be an arbitrary element of {V j} j∈J . Then X \ V
is compact by condition (ii) and is covered by {Ui}i∈I ∪ {V j \ {∞}} j∈J . Therefore X \ V
admits a finite subcover {Ui}

n
i=1
∪ {V j \ {∞}}

m
j=1. Now clearly {V ∪ {Ui}

n
i=1
∪ {V j}

m
j=1} is a

finite subcover for X′.
(d) Assume X

′
is not connected, i.e. ∃ open sets U,V such that X

′
= U ∪ V and U ∩ V = ∅.

WLOG, say ∞ ∈ U, then V is compact in X by condition (ii), and thus V is closed. Since
V ⊂ X, by condition (i), V is open in X, contradicting the fact that X is connected. Hence,
X
′

is connected.
(e) Consider the bijective map p : Rt{∞} → S

2
defined by sending∞ to the north pole of the

sphere and the rest of the map defined by stereographic projection. By part (c), Rt {∞} is
compact. S

2
is a subspace of a Hausdorff space, so it is Hausdorff. A continuous bijection

from a compact space to a Hausdorff space is a homeomorphism.

(2) (a) Explain why (and how) a continuous map f : X → Y with f (x) = y induces a group homo-
morphism π1(X, x)→ π1(Y, y).
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(b) Use the fact that π1(S 1) � Z to prove Brouwer’s Fixed Point Theorem: for every continuous
map f : D2 → D2, there is a ∈ D2 such that f (a) = a.

Solution:
(a) If α : I→ X is a loop at x, then f ◦ α : I→ Y is a loop at y. If β : I→ X is a loop at x such

that β �p α, then f ◦ β is a loop at y and f ◦ β �p f ◦ α. This path-homotopy is given by
f ◦ H : I × [0, 1]→ Y if H : I × [0, 1]→ X is a path-homotopy from β to α.

(b) Suppose that there is no such fixed point, i.e. f (x) , x for all x ∈ D2. Then for each x,
consider the half line from f (x) to x. This line intersects with S 1. Let this point be denoted
by r(x) So define a map

r : B2 → S 1, x 7→ r(x).
This map is well-defined because there is no fixed point. This map is continuous. This
map r is a retraction from D2 to S 1 and thus the inclusion i : S 1 → D2 induces an injection
on fundamental groups. It is impossible since π1(S 1) = Z and π1(D2) = {1}.

(3) Let X be any topological space, Y a Hausdorff space, and f : X → Y a continuous map. The graph
of f is defined as the subspace

G f := {(x, f (x)) ∈ X × Y | x ∈ X}.

(a) Show that G f is a closed subspace.
(b) Find a counter example to part (a) in the case when Y is not Hausdorff.
(c) If f : X → Y is a map and G f is closed, then f must be continuous?

Solution:
(a) Let (x, y) < G f , i.e f (x) , y in Y . Since Y is Hausdorff, there are open nbhds Uy and U f (x)

such that Uy ∩ U f (x) = ∅. Then consider U := f −1(U f (x)) × Uy which is an open nbd of
(x, y). We can show that U ∩G f = ∅ which proves that G f is closed: let (a, b) ∈ U. Then
f (a) ∈ U f (x). Since b ∈ Uy, b , f (a).

(b) Let X be any topological space that is not Hausdorff and let f : X → X be the identity
map on X. Then by HW3 question 1, we know that the diagonal ∆ = G f is not closed.

(c) I haven’t gotten the complete answer yet.

(4) Let X be a topological space, and A and B compact subspaces.
(a) Show that A ∪ B is compact.
(b) Show that if X is Hausdorff, then A ∩ B is compact.
(c) Give a counterexample to part (b) in the case when X is not Hausdorff.

Solution
(a) Let K = A ∪ B. Let {Uα ∩ K} be an open covering of K where Uα’s are open sets in

X. Then {Uα ∩ A} and {Uα ∩ B} are open coverings of A and B. Since A, B are compact,
we find a finite subcoverings {Vi ∩ A, i = 1, · · · , n} and {W j ∩ B, j = 1, · · · ,m} where
{Vi}, {W j} ⊂ {Uα}. Then {Vi ∩K,W j ∩K, i = 1, · · · , n, j = 1, · · · ,m} is a finite subcovering
of K.

(b) Let L = A ∩ B and K = A ∪ B. Since X is Hausdorff and A, B compact, by Thm 26.3, A
and B are closed. Thus, A ∩ B is closed. Since A ∩ B is a closed subset of a compact set
A, it must be compact by Thm 26.2.



3

Solution
(c) Let X be the Cartesian product of the real line with usual topology and the set {0, 1} with

trivial topology. Let A = {[a, b] × 0} ∪ {(a, b) × 1} and B = {(a, b) × 0} ∪ {[a, b] × 1}. Note
that A is compact: given an open cover of A, say {Ui} = {U′i × {0, 1}}, there is a finite
subcover for [a, b] consisting of finitely many U′i . Similarly, B is compact. But clearly
A ∩ B = (a, b) × {0, 1} is not compact since a × {0, 1} is a limit point.

(5) (a) Let X be a Hausdorff space. Show that any connected subset A ⊂ X contains one or infinitely
many elements.

(b) Let A be a countable subset of R2. Prove that R2 − A is path-connected.

Solution
(a) Say A is connected, with 1 < |A| < ∞, say A = {a1, a2, . . . , an}. Since X is Hausdorff, ∀i,
∃Ui,Vi such that a1 ∈ Ui, ai ∈ Vi and Ui ∩ Vi = ∅. Let U =

⋂
i Ui and V =

⋃
i Vi. Then

U and V separate A, contradicting the assumption. Thus, A has one or infinitely many
elements.

(b) Consider points x, y ∈ R2 − A. Note that there are uncountably many disjoint paths in the
plane from x to y. Since A is countable, there exists a path that does not intersect A. Since
x, y were arbitrary, R2 − A is path-connected.

(6) Determine whether or not there is a retraction from X to A for the following spaces. If there is a
retraction, describe it explicitly, using pictures if you like.
(a) X is S 1 × D2 and A is S 1 × S 1.
(b) X is S 1 × S 1 and A = {(x, x) ∈ X | x ∈ S 1}.

Solution:
(a) If there is a retraction from X to A, then i∗ : π1(A)→ π1(X) is injective. π1(X) is Z because

π1(S 1 × D2) �1 π1(S 1) × π1(D2) �2 π1(S 1) × {1} (�1 is by Thm 11.14 [L] and �2 is by
Lemma 9.2 [L]). On the other hand, π1(S 1 × S 1) is Z × Z. So it is impossible.

(b) r : S 1 × S 1 → A defined by (x, y)→ (x, x) is a retraction.

(7) Prove that a surjective map from a compact space to a Hausdorff space is a quotient map.

Solution: A surjective map from a compact space E to a Hausdorff space X is a closed map and
so a quotient map: a closed set A ⊂ E is compact since E is compact, the image of a compact
subspace is compact, a compact subspace in a Hausdorff space is closed.

(8) Prove that S 1 := {e2πiθ, θ ∈ R} ⊂ C is homeomorphic to the quotient space obtained from [0, 1] by
identifying 0 and 1.

Solution: Consider the map p : [0, 1] → S 1, θ 7→ e2πiθ. It factors through the quotient map
q : [0, 1]→ [0, 1]/ ∼ and there is a continuous bijection [0, 1]/ ∼→ S 1. Since [0, 1] is compact,
the image of q, [0, 1]/ ∼ is compact. S 1 is a subspace of a Hausdorff space, so it is Hausdorff.
A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
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