Series Formulae

Arithmetic and Geometric progressions
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(These results also hold for complex series.)
Convergence of series: the ratio test
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Convergence of series: the comparison test

If each term in a series of positive terms is less than the corresponding term in a series known to be convergent,
then the given series is also convergent.

Binomial expansion
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If n is a positive integer the series terminates and is valid for all x: the term in x" is "Cyx" or (”) where "C, =
n!
rt(n —r)!
i objects without replacement. When # is not a positive integer, the series does not terminate: the infinite series is

convergent for |x| < 1.

is the number of different ways in which an unordered sample of r objects can be selected from a set of

Taylor and Maclaurin Series

If y(x) is well-behaved in the vicinity of x = a then it has a Taylor series,
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where 1 = x — a and the differential coefficients are evaluated at x = a. A Maclaurin series is a Taylor series with
a=0,
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Power series with real variables
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This last result is a special case of the more general formula,
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Plane wave expansion
exp(ikz) = exp(ikrcos8) = §(2I + )i ji(kr)Pi(cos @),
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where Pj(cos8) are Legendre polynomials (see section 11) and j;(kr) are spherical Bessel functions, defined by

jilp) =4 /%}H 1,(p), with [;(x) the Bessel function of order / (see section 11).




