Matrix Algebra Formulae

Unit matrices

The unit matrix I of order n is a square matrix with all diagonal elements equal to one and all off-diagonal elements zero, i.e., $(I)_{ij} = \delta_{ij}$. If A is a square matrix of order n, then AI = IA = A. Also $I = I^{-1}$. I is sometimes written as I_n if the order needs to be stated explicitly.

Products

If *A* is a $(n \times l)$ matrix and *B* is a $(l \times m)$ then the product *AB* is defined by

$$(AB)_{ij} = \sum_{k=1}^{l} A_{ik} B_{kj}$$

In general $AB \neq BA$.

Transpose matrices

If *A* is a matrix, then transpose matrix A^T is such that $(A^T)_{ij} = (A)_{ji}$.

Inverse matrices

If *A* is a square matrix with non-zero determinant, then its inverse A^{-1} is such that $AA^{-1} = A^{-1}A = I$.

$$(A^{-1})_{ij} = \frac{\text{transpose of cofactor of } A_{ij}}{|A|}$$

where the cofactor of A_{ij} is $(-1)^{i+j}$ times the determinant of the matrix A with the j-th row and i-th column deleted.

Determinants

If A is a square matrix then the determinant of A, $|A| (\equiv \det A)$ is defined by

$$|A| = \sum_{i,j,k,\dots} \epsilon_{ijk\dots} A_{1i} A_{2j} A_{3k} \dots$$

where the number of the suffixes is equal to the order of the matrix.

2×2 matrices

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then,

$$|A| = ad - bc \qquad A^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \qquad A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Product rules

$$(AB...N)^T = N^T...B^TA^T$$

 $(AB...N)^{-1} = N^{-1}...B^{-1}A^{-1}$ (if individual inverses exist)
 $|AB...N| = |A||B|...|N|$ (if individual matrices are square)

Orthogonal matrices

An orthogonal matrix Q is a square matrix whose columns q_i form a set of orthonormal vectors. For any orthogonal matrix Q,

$$Q^{-1} = Q^T$$
, $|Q| = \pm 1$, Q^T is also orthogonal.

Solving sets of linear simultaneous equations

If *A* is square then Ax = b has a unique solution $x = A^{-1}b$ if A^{-1} exists, i.e., if $|A| \neq 0$.

If *A* is square then Ax = 0 has a non-trivial solution if and only if |A| = 0.

An over-constrained set of equations Ax = b is one in which A has m rows and n columns, where m (the number of equations) is greater than n (the number of variables). The best solution x (in the sense that it minimizes the error |Ax - b|) is the solution of the n equations $A^TAx = A^Tb$. If the columns of A are orthonormal vectors then $x = A^Tb$.

Hermitian matrices

The Hermitian conjugate of A is $A^{\dagger} = (A^*)^T$, where A^* is a matrix each of whose components is the complex conjugate of the corresponding components of A. If $A = A^{\dagger}$ then A is called a Hermitian matrix.

Eigenvalues and eigenvectors

The n eigenvalues λ_i and eigenvectors u_i of an $n \times n$ matrix A are the solutions of the equation $Au = \lambda u$. The eigenvalues are the zeros of the polynomial of degree n, $P_n(\lambda) = |A - \lambda I|$. If A is Hermitian then the eigenvalues λ_i are real and the eigenvectors u_i are mutually orthogonal. $|A - \lambda I| = 0$ is called the characteristic equation of the matrix A.

$$\operatorname{Tr} A = \sum_{i} \lambda_{i}$$
, also $|A| = \prod_{i} \lambda_{i}$.

If S is a symmetric matrix, A is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the matrix whose columns are the normalized eigenvectors of A, then

$$U^T S U = \Lambda$$
 and $S = U \Lambda U^T$.

If x is an approximation to an eigenvector of A then $x^TAx/(x^Tx)$ (Rayleigh's quotient) is an approximation to the corresponding eigenvalue.

Commutators

$$[A, B] \equiv AB - BA$$

$$[A, B] = -[B, A]$$

$$[A, B]^{\dagger} = [B^{\dagger}, A^{\dagger}]$$

$$[A + B, C] = [A, C] + [B, C]$$

$$[AB, C] = A[B, C] + [A, C]B$$

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0$$

Hermitian algebra

$$\boldsymbol{b}^{\dagger} = (b_1^*, b_2^*, \ldots)$$

$$b = \sum_{i} u_i (u_i \cdot b)$$

$$b = \sum_{i} u_{i}(u_{i} \cdot b)$$
 $\phi = \sum_{i} \psi_{i} \left(\int \psi_{i}^{*} \phi \right)$ $\phi = \sum_{i} \ket{i} \bra{i} \phi$

$$\phi = \sum_{i} |i\rangle \langle i|\phi\rangle$$

Rayleigh-Ritz

$$\lambda_0 \leq \frac{b^* \cdot A \cdot b}{b^* \cdot b}$$

$$\lambda_0 \leq rac{m{b}^* \cdot A \cdot m{b}}{m{b}^* \cdot m{b}} \hspace{1cm} \lambda_0 \leq rac{\int \psi^* O \psi}{\int \psi^* \psi} \hspace{1cm} rac{\langle \psi | O | \psi
angle}{\langle \psi | \psi
angle}$$

$$\frac{\langle \psi | O | \psi \rangle}{\langle \psi | \psi \rangle}$$

Pauli spin matrices

$$\begin{split} \sigma_x &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\ \sigma_x \sigma_y &= \mathrm{i}\sigma_z, \quad \sigma_y \sigma_z = \mathrm{i}\sigma_x, \quad \sigma_z \sigma_x = \mathrm{i}\sigma_y, \quad \sigma_x \sigma_x = \sigma_y \sigma_y = \sigma_z \sigma_z = I \end{split}$$